Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Léon Dupont, ${ }^{\text {a* }}$ Mouslim Messalib ${ }^{\text {b }}$ and Léon Christiaens ${ }^{\text {b }}$

${ }^{\text {a }}$ Unité de Cristallographie, Institut de Physique bât. B5, Université de Liège, Allée du 6 août, 17 , B-4000 Liège, Belgium, and ${ }^{\text {b }}$ Chimie Hétérocyclique Organique des Chalcogènes, Institut de Chimie - bât. B6, Université de Liège, Allée de la Chimie, 17, B-4000 Liège, Belgium

Correspondence e-mail: leon.dupont@ulg.ac.be

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.041$
$w R$ factor $=0.111$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

o-Methylselenobenzoyl cyanide

In the crystal structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOSe}$, a potential anti-oxidizing agent, the whole molecule lies in the $(0, y, z)$ plane except for two methyl H atoms, whose positions are symmetry-related across that plane. A close $\mathrm{Se} \cdot \mathrm{Se}$ contact $[3.359(2) \AA$] is observed. There are no hydrogen bonds.

Comment

Some modifications of the molecular structure of Ebselen (Natterman/RP, 1981; Dupont et al., 1990), an anti-inflammatory compound, have been attempted in order to obtain a more soluble derivative which retains the pharmacological properties. The crystal structure of the title compound, (I), was determined in order to identify, without ambiguity, a potential anti-oxidant derivative. The crystal packing is governed by van der Waals interactions. There is an $\mathrm{Se} \cdot \mathrm{Se}^{\mathrm{i}}$ close contact [symmetry code: (i) $x,-y, 1-z$) of 3.359 (2) \AA, rather less than the sum of Se atom radii (3.8 Å; Bondi, 1964). The distance is, nevertheless, larger than that of a covalent $\mathrm{Se}-\mathrm{Se}$ bond [2.3229 (6) Å; Kumar \& Nangia, 2000].

(I)

Experimental

The synthesis of the title compound was carried out in two steps. o-Methylselenobenzoic acid was treated with α, α-dichloromethyl ether and then with KCN (Messali, 2001). A yellow single crystal was obtained by slow evaporation of a toluene solution.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOSe}$
$\mathrm{Cu} K \alpha$ radiation
$M_{r}=224.12$
Orthorhombic, Cmca
$a=6.8433$ (19) \AA
$b=15.585$ (9) \AA
$c=16.6460(12) \AA$
$V=1775.4(12) \AA^{3}$
$Z=8$
$D_{x}=1.677 \mathrm{Mg} \mathrm{m}^{-3}$

Received 29 January 2002
Accepted 19 February 2002 Online 28 February 2002

Figure 1
The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.

Data collection

Stoe-Siemens AED four-circle diffractometer
ω scans
Absorption correction: ψ scan (EMPIR; Stoe \& Cie, 1987)
$T_{\text {min }}=0.140, T_{\text {max }}=0.375$
848 measured reflections
848 independent reflections

624 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=67.9^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 18$
$l=0 \rightarrow 20$
2 standard reflections frequency: 60 min intensity decay: 5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.111$
$S=1.01$
848 reflections
74 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0712 P)^{2}\right. \\
& +0.7549 \mathrm{P}] \\
& \begin{array}{c}
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
\end{array} \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0078 \text { (6) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Se1-C1	$1.887(5)$	N1-C9	$1.135(7)$
$\mathrm{Se} 1-\mathrm{C} 7$	$1.932(5)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.454(5)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.210(7)$		
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{C} 7$	$100.2(2)$	$\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 9$	$117.6(5)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 6$	$125.9(5)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$174.4(6)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$116.5(4)$		

H atoms were placed at standard calculated positions and included in the refinement in the riding-model approximation, with isotropic displacement parameters fixed at $1.2 U_{\text {eq }}$ of the parent atom (1.5 $U_{\text {eq }}$ for methyl H atoms).

Data collection: DIF4 (Stoe \& Cie, 1987); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

References

Bondi, A. (1964). J. Chem. Phys. 68, 441-451.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Dupont, L., Dideberg, O. \& Jacquemin, P. (1990). Acta Cryst. C46, 484-486.
Kumar, V. S. S. \& Nangia, A. (2000). Acta Cryst. C56, 123-124.
Messali, M. (2001). PhD thesis, University of Liège, Belgium.
Natterman/RP (1981). Eur. Patent EP 44971.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1987). DIF4, REDU4 and EMPIR. Versions 6.2. Stoe \& Cie, Darmstadt, Germany.

