Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Léon Dupont,^a* Mouslim Messali^b and Léon Christiaens^b

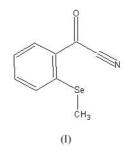
^aUnité de Cristallographie, Institut de Physique bât. B5, Université de Liège, Allée du 6 août, 17, B-4000 Liège, Belgium, and ^bChimie Hétérocyclique Organique des Chalcogènes, Institut de Chimie - bât. B6, Université de Liège, Allée de la Chimie, 17, B-4000 Liège, Belgium

Correspondence e-mail: leon.dupont@ulg.ac.be

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.041 wR factor = 0.111 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

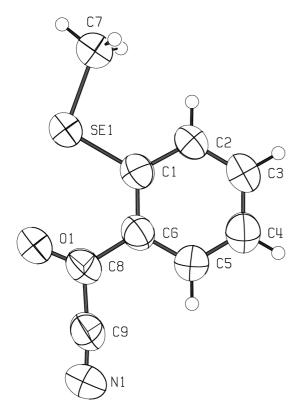

In the crystal structure of the title compound, C_9H_7NOSe , a potential anti-oxidizing agent, the whole molecule lies in the (0,y,z) plane except for two methyl H atoms, whose positions are symmetry-related across that plane. A close Se···Se contact [3.359 (2) Å] is observed. There are no hydrogen bonds.

o-Methylselenobenzoyl cyanide

Received 29 January 2002 Accepted 19 February 2002 Online 28 February 2002

Comment

Some modifications of the molecular structure of Ebselen (Natterman/RP, 1981; Dupont *et al.*, 1990), an anti-inflammatory compound, have been attempted in order to obtain a more soluble derivative which retains the pharmacological properties. The crystal structure of the title compound, (I), was determined in order to identify, without ambiguity, a potential anti-oxidant derivative. The crystal packing is governed by van der Waals interactions. There is an Se···Seⁱ close contact [symmetry code: (i) x, -y, 1-z) of 3.359 (2) Å, rather less than the sum of Se atom radii (3.8 Å; Bondi, 1964). The distance is, nevertheless, larger than that of a covalent Se–Se bond [2.3229 (6) Å; Kumar & Nangia, 2000].


Experimental

The synthesis of the title compound was carried out in two steps. *o*-Methylselenobenzoic acid was treated with α , α -dichloromethyl ether and then with KCN (Messali, 2001). A yellow single crystal was obtained by slow evaporation of a toluene solution.

Crystal data

C ₀ H ₇ NOSe	Cu $K\alpha$ radiation
$M_r = 224.12$	Cell parameters from 32
Orthorhombic, Cmca	reflections
$a = 6.8433 (19) \text{\AA}$	$\theta = 31.5 - 36.3^{\circ}$
b = 15.585(9) Å	$\mu = 5.31 \text{ mm}^{-1}$
c = 16.6460 (12) Å	T = 293 (2) K
$V = 1775.4 (12) \text{ Å}^3$	Prism, yellow
Z = 8	$0.61 \times 0.38 \times 0.23 \text{ mm}$
$D_x = 1.677 \text{ Mg m}^{-3}$	

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.

Data collection

Stoe–Siemens AED four-circle	624 reflections with $I > 2\sigma(I)$
diffractometer	$\theta_{\rm max} = 67.9^{\circ}$
ω scans	$h = 0 \rightarrow 8$
Absorption correction: ψ scan	$k = 0 \rightarrow 18$
(EMPIR; Stoe & Cie, 1987)	$l = 0 \rightarrow 20$
$T_{\min} = 0.140, \ T_{\max} = 0.375$	2 standard reflections
848 measured reflections	frequency: 60 min
848 independent reflections	intensity decay: 5%

Refinement

.

ł

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0712P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.7549P]
$wR(F^2) = 0.111$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
848 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
74 parameters	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0078 (6)

Table 1

Sel	ected	geometric	parameters	(A,	°)	1.
-----	-------	-----------	------------	-----	----	----

Se1-C1	1.887 (5)	N1-C9	1.135 (7)
Se1-C7	1.932 (5)	C6-C8	1.454 (5)
O1-C8	1.210 (7)		
C1-Se1-C7	100.2 (2)	C6-C8-C9	117.6 (5)
01-C8-C6	125.9 (5)	N1-C9-C8	174.4 (6)
01-C8-C9	116.5 (4)		

H atoms were placed at standard calculated positions and included in the refinement in the riding-model approximation, with isotropic displacement parameters fixed at $1.2U_{\rm eq}$ of the parent atom (1.5 $U_{\rm eq}$ for methyl H atoms).

Data collection: *DIF*4 (Stoe & Cie, 1987); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97.

References

- Bondi, A. (1964). J. Chem. Phys. 68, 441-451.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Dupont, L., Dideberg, O. & Jacquemin, P. (1990). Acta Cryst. C46, 484–486.
- Kumar, V. S. S. & Nangia, A. (2000). Acta Cryst. C**56**, 123–124.
- Messali, M. (2001). PhD thesis, University of Liège, Belgium.
- Natterman/RP (1981). Eur. Patent EP 44971.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1987). *DIF4*, *REDU*4 and *EMPIR*. Versions 6.2. Stoe & Cie, Darmstadt, Germany.